## 2025 STATISTICS

Full Marks: 100

Pass Marks: 33

Time: Three hours

Attempt all Questions.

The figures in the right margin indicate full marks for the questions.

For Question Nos. 1 to 10, choose the correct answer and rewrite.

1. In tossing three coins at a time, the probability of getting atmost one head is:

1:

(A) 
$$\frac{3}{8}$$

(B) 
$$\frac{7}{8}$$

(C) 
$$\frac{1}{2}$$

(D) 
$$\frac{1}{8}$$

- 2. Three horses A, B and C are in a race. A is twice as likely to win as B and B is likely to win as C. The probability of winning the horse A is:
  - (A)  $\frac{1}{7}$

(B) 
$$\frac{2}{7}$$

(C)  $\frac{3}{7}$ 

(D)  $\frac{4}{7}$ 

| 3.   | For $\Delta^5$ | $U_0 = 3$ , $U_0 = 3$ | Uı              | = 12,  | U <sub>2</sub> : | = 81,     | Į    | J3=    | 200,   | $U_4=100$ , then the value of 1            |
|------|----------------|-----------------------|-----------------|--------|------------------|-----------|------|--------|--------|--------------------------------------------|
|      | (A)            | - 259                 |                 |        |                  | ner are   |      | (B)    | 496    |                                            |
|      | (C)            | 0                     |                 |        |                  |           |      | (D)    | 1      |                                            |
| 4.   | The            | value of              | E² (si          | n x) a | t inte           | rval of   | f di | ffere  | nces 2 | 2 is: 1                                    |
|      | (A)            | cos (x                | + 4)            |        |                  |           |      | (B)    | cos (  | (x+2)                                      |
|      | (C)            | sin (x +              | <del>-</del> 2) |        |                  |           |      | (D)    | sin (  | x + 4)                                     |
| 5.   | A cu           | rve is dr             | awn te          | o pass | throu            | igh the   | e po | ints g | given  | by the following data:                     |
|      |                | <b>x:</b>             | 1               | 2      | 3                | 4         | 5    |        |        |                                            |
|      |                | <b>f</b> (x):         | 2               | 2.4    | 2.7              | 2.9       | 3    |        |        |                                            |
|      |                | estimate<br>ezoidal'  |                 |        | nded             | by the    | cu   | rve,   | x-axis | s and lines $x = 1$ , $x = 5$ using  1     |
|      | (A)            | 10.5                  |                 |        |                  |           |      | (B)    | 10     |                                            |
|      | (C)            | 9.5                   |                 |        |                  |           |      | (D)    | 9      |                                            |
| 6.   | IfX            | ~ P(2), t             | he me           | ean of | the d            | istribı   | utio | n is : |        | • 1:                                       |
|      | (A)            | 2                     |                 |        |                  | , te is . |      | (B)    | 4      |                                            |
|      | (C)            | 6                     |                 | n ()   |                  |           | 1.   | (D)    | 8      |                                            |
| 7.   | Forti          |                       | ıtes A a        | and B, | if(AB            | )=25,     | (Aß  | 3)=2   | 0,(αΙ  | 3)=10, $(\alpha\beta)$ =15, then the value |
|      | (A)            | 25                    |                 |        |                  |           |      | (B)    | 45     |                                            |
|      | (C)            | 50                    |                 |        |                  |           |      | (D)    | 70     |                                            |
| 32 8 | Sts 12         | /25                   |                 |        |                  |           | 2    |        |        | Contd.                                     |

| 8.   | 8. If $(\alpha) = 600$ , $(\beta) = 50$ , $(\alpha\beta) = 20$ , $N = 1000$ , then the attributes are:                                 |                |                                                                                                                 |          |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|
|      | (A) independent                                                                                                                        | (B)            | positively associated                                                                                           |          |  |  |  |  |
|      | (C) negatively associated                                                                                                              | (D)            | no conclusion                                                                                                   |          |  |  |  |  |
| 9.   | If S <sup>2</sup> x and S <sup>2</sup> y are the unbaised estimates two independent samples of size distribution for testing the equal | es 10 and 12   | 2, then the degrees of freedom of                                                                               | of F     |  |  |  |  |
|      | (A) (9, 11)                                                                                                                            | (B)            | (10, 11)                                                                                                        | 1        |  |  |  |  |
|      | (C) (9, 12)                                                                                                                            |                | (11, 9)                                                                                                         |          |  |  |  |  |
| 10.  | Complete count of the heads of                                                                                                         |                | [조명] 이후 [16] 경우 (16] 16 [16] 16 [16] 16 [16] 16 [16] 16 [16] 16 [16] 16 [16] 16 [16] 16 [16] 16 [16] 16 [16] 16 | 1        |  |  |  |  |
|      | (A) census                                                                                                                             | (B)            | vital statistics                                                                                                |          |  |  |  |  |
|      | (C) demography                                                                                                                         | (D)            | sample survey                                                                                                   |          |  |  |  |  |
| 11.  | Write the range of probability of                                                                                                      | an event.      |                                                                                                                 | 1        |  |  |  |  |
| 12.  | If $E(x) = 5$ and $E(y) = 7$ such that                                                                                                 | t x and y are  | independent, calculate E(xy).                                                                                   | 1        |  |  |  |  |
| 13.  | Write one advantage of using into                                                                                                      | erpolation to  | echniques.                                                                                                      | 1        |  |  |  |  |
| 14.  | Using Simpson's $\frac{3}{8}$ th rule of nu                                                                                            | merical inte   | gration, the value of $\int_{-3}^{3} x^2 dx$ is                                                                 | 18.      |  |  |  |  |
|      | Obtain the error of estimate from                                                                                                      | n exact valu   | e.                                                                                                              | 1        |  |  |  |  |
| 15.  | Write the probability distribution a normal distribution with mean                                                                     |                | 4. 교육하게 1802 마양함이 어느 보는 사람이 아니는 이 경제하게 되는데 1802년                                                                | ows<br>1 |  |  |  |  |
| 16.  | Examine the consistency of the f                                                                                                       | ollowing da    | ıta :                                                                                                           |          |  |  |  |  |
|      | N = 100, $(A) = 60$ , $(B) = 50$ , $(A I)$                                                                                             | (3) = 5, the s | ymbols have their usual meanir                                                                                  | ng.      |  |  |  |  |
| 17.  | Define level of significance.                                                                                                          |                |                                                                                                                 | 1        |  |  |  |  |
| 32 S | its 12/25                                                                                                                              | 3              | PT                                                                                                              | 0        |  |  |  |  |

- 18. Find the degrees of freedom for  $\chi^2$  test statistic in case of contingency table of order  $2 \times 2$ .
- 19. Define crude death rate.

1

20. Rewrite correct statement:

"In life table, nPx is the probability that a person aged 'x' dies at the age of x+n."

- 21. Given that  $P(A) = \frac{1}{3}$ ,  $P(B) = \frac{1}{4}$ ,  $P(A/B) = \frac{1}{6}$ , find the probability P(B/A). 2
- 22. Estimate  $U_2$  given that  $U_1 = 7$  and  $U_3 = 13$  using  $\Delta$  and E operations.
- 23. If  $X \sim N(\mu, \sigma^2)$ , approximately represent P(X < 30) = 0.1 and  $P(X \ge 80) = 0.05$  in a single diagram.
- 24. Define positive and negative classes in the theory of attributes. 2
- 25. Draw the curve of t-distribution at  $\alpha$ -level of significance for two-tailed test showing the regions of acceptance and rejection.
- 26. Write any two methods of obtaining vital statistics.
- 27. For the given data below, compute the total fertility rate: 2

| Age Group | Female Population | Total Births |  |  |
|-----------|-------------------|--------------|--|--|
| (in year) | olias, in license |              |  |  |
| 20 - 24   | 30,000            | 15,000       |  |  |
| 25 - 29   | 24,000            | 12,000       |  |  |
| 30 - 34   | 20,000            | 6,000        |  |  |
| 35 - 39   | 16,000            | 3,000        |  |  |

28. Estimate the standardised death rates for the two countries A and B from the data given below and compare the results:

2

$$\sum P_x^S = 1000$$
,  $\sum m_x^a P_x^S = 7372$  and  $\sum m_x^b P_x^S = 4700$ 

(The symbols have their own meanings.)

- 29. p is the probaility that a man aged 'x' years will die in a year. Out of two men A and B each aged x years, find the probability that A will die in a year and will be the first to die.
- 30. (a) One shot is fired from each of the three guns A, B and C independently. If the chances that the target is hit by A, B and C guns are 0.5, 0.6 and 0.8 respectively, what is the probability that at least two hits are registered?

Or

- (b) Two unbaised dice are thrown. Find the expected values of the sum of numbers of points on them.

  4
- 31. (a) Given that  $\sum_{1}^{7} U_x = 100$ ,  $\sum_{4}^{7} U_x = 49$ ,  $U_7 = 16$ , find U1 by using Newton's forward interpretation formula.

Or

(b) Given the following data, find the value of y when x = 7 by using Newton's backward interpretation formula.

| > | ζ:         | .0 2. |      | 4  | 6   | 8   |  |
|---|------------|-------|------|----|-----|-----|--|
| 2 | <b>/</b> : | 66    | . 81 | 93 | 101 | 106 |  |

- 32. What is meant by numerical integration? Write the general quadrature formula for equidistant ordinates.
- 33. (a) Evaluate  $\log_e 7$  by Simpson's  $\frac{1}{3}$ rd rule from the integral  $\int_0^6 \frac{1}{1+x} dx$ .
  - (b) Evaluate  $\int_{1}^{7} 2x^{2} dx$  by using Simpson's three-eighth rule for numerical integration.

P.T.O.

|     |     | To the second                                                                                                                                                                  |             |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 34. | (a) |                                                                                                                                                                                |             | ving ultimate c<br>sitive classes:                              | lass frequencies, find the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|     |     | (ABC) = 1                                                                                                                                                                      | 50,         | $(AB\gamma) = 740,$                                             | $(A \beta C) = 220$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|     |     | $(A\beta\gamma)=1$                                                                                                                                                             | 200,        | $(\alpha BC) = 200,$                                            | $(\alpha B \gamma) = 1760$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|     |     | $(\alpha \beta C) =$                                                                                                                                                           | 170,        | $(\alpha \beta \gamma) = 21800.$                                | n de la companya de<br>La companya de la companya de |  |  |  |  |
| W   |     |                                                                                                                                                                                |             | Or Maria                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|     | (b) | are attacke                                                                                                                                                                    | ed and 70%  | nctually invaded by<br>have been vaccina<br>t must have been at | smallpox 60% of the inhabitanted. Find the lowest percentatacked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 35. | (a) | Two rando                                                                                                                                                                      | results:    |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|     |     | Sample                                                                                                                                                                         | Size        | Sample mean                                                     | Sum of squares of deviations from their means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|     |     | 1                                                                                                                                                                              | 10          | 15                                                              | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| %:  |     | 2                                                                                                                                                                              | 12          | 14                                                              | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|     |     | Test whether the population variances are significantly different.<br>{Given: $F_{0.05}$ (11,9) = 3.10 (approx), $F_{0.05}$ (9,11) = 2.90} 4  Or                               |             |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|     | (b) | <ul> <li>(b) A certain stimulus administered to each of the 12 patients r the following increase of blood pressure:</li> <li>5, 2, 8,-1, 3, 0, -2, 1, 5, 0, 4 and 6</li> </ul> |             |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|     |     |                                                                                                                                                                                |             |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|     |     | Can it be concluded that the stimulus will, in general, be accompanied by an increase in blood pressure? (Give: $t_{0.05}$ for one-tailed test at 11 d - f = 1.80)             |             |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 36. | (a) | State and p                                                                                                                                                                    | rove additi | ve law of probabilit                                            | y. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|     |     |                                                                                                                                                                                |             | Or                                                              | \$20.00 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|     | (b) | (b) State and prove addition theorem of expectation.                                                                                                                           |             |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|     |     |                                                                                                                                                                                |             |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |

| 37.  | (a)    | Construct the forward difference table for the equation $y = 2x^3 - x^2 + 3x + 1$ corresponding to $x = 0, 1, 2, 3, 4$ and 5.                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|      |        | Or                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|      | (b)    | Using Lagrange's interpolation formula, find the form of the function $y=f(x)$ given that                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|      |        | x: 0 2 3 6:                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|      |        | f(x): 36 16 18 72                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| 38.  | (a)    | A and B play a game in which their chances of winning are in the 3:2. Out of 5 games played, calculate A's chance of winning                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|      |        | <ul><li>(i) exactly 3 games;</li><li>(ii) at most 2 games.</li></ul>                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|      |        | (11) at most 2 games.                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|      | (b)    | A car hire firm has two cars, which it hires out day by day. The number of demands for a car on each day is distributed as Poison distribution with mean 2. Calculate the proportion of days on which  (i) neither car is used;                                                                                            |  |  |  |  |  |  |  |  |
|      |        | (ii) only one car is used.                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| 39.  | (a)    | Among the adult population of a certain town, 60% are males, 50% are wage earners and 40% are 45 years and above, 10% of the males are not wage-earners and 40% of the males are under 45. Make the best possible inference about the limits within which the percentage of persons of 45 years or above are wage-earners. |  |  |  |  |  |  |  |  |
|      |        | <b>Or</b>                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|      | (b)    | 800 candidates of both sexes appeared at an examination. The boys outnumbered the girls by 15% of the total. The number of candidates who passed exceed the number failed by 480.  Equal number of boys and girls failed in the examination.                                                                               |  |  |  |  |  |  |  |  |
|      |        | Prepare a 2 × 2 table and make the inference about the Yule's coefficient of association.                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| 32 5 | Sts 12 | 2/25 7 P.T.O.                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |

40. The demand for a particular spare part in a factory was found to vary from day-to-day. In a sample study, the following information was obtained:

| Days :       | Mon      | Tue        | Wed    | Thu | Fri | Sat |
|--------------|----------|------------|--------|-----|-----|-----|
| No. of parts | gar-basi | San Or The | ar Kuş |     |     |     |
| demanded :   | 498      | 499        | 511    | 502 | 500 | 490 |

Test the null hypothesis that the number of parts demanded does not depend on the day of the weak.

(Given:  $X_{0.05}^2 = 11.07$  at 5d.f)

41. Given the following table for lx, the number of rabbits living at age x, compute the life table for rabbits:

| x: ` | 0   | 1  | 2  | 3  | . 4 | 5  | 6 |
|------|-----|----|----|----|-----|----|---|
| lx:  | 100 | 90 | 80 | 75 | 60  | 30 | 0 |

Calculate the column of dx, qx and Lx only.