2022

MATHEMATICS

Full Marks: 100

Pass Marks: 33

Time: Three hours

Attempt all Questions.

The figures in the right margin indicate full marks for the questions. For Question Nos. 1 - 4, write the letter associated with the correct answer.

1. If
$$\sin^{-1} x = -\frac{\pi}{3}$$
, $x \in [-1,1]$, then the value of $\cos^{-1} x$ is

- A. $\frac{\pi}{3}$
- B. $\frac{\pi}{6}$ C. $\frac{2\pi}{3}$ D. $\frac{5\pi}{6}$

2. The integral
$$\int \frac{dx}{\sqrt{x^2 + a^2}}$$
 equals

A. $\frac{1}{a} \tan^{-1} \frac{x}{a} + C$

B.
$$\log |x + \sqrt{x^2 + a^2}| + C$$

C. $\sin^{-1}\frac{x}{a} + C$

D.
$$\log |x - \sqrt{x^2 + a^2}| + C$$

P.T.O.

- 3. A homogenous differential equation of the form $\frac{dy}{dx} = g\left(\frac{y}{x}\right)$ can be solved by making the substitution
 - A y = vx
 - B. v = xy
 - C. x = vy
 - D. y = v
- 4. The projection of the vector $\hat{i} \hat{j}$ on the vector $\hat{i} + \hat{j}$ is
 - A. 0
 - B. 1
 - $C. \quad \frac{1}{\sqrt{2}}$
 - $D. \quad \frac{1}{2}$
- 5. Define a binary operation on a set.
- 6. What is the range of the principal value branch of the function sec⁻¹?
- 7. Find the value of $\tan^{-1} \left(\tan \frac{3\pi}{4} \right)$.
- 8. Find $AB \text{ if } A = \begin{bmatrix} 2 & -3 \\ 4 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 & 1 & 3 \\ 2 & -4 & 1 \end{bmatrix}$.

1

9. For what value of k is the function fdefined by

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$$

continuous at x = 0?

10. Find the second order derivative of the function x. cos x.

11. Find $\int e^x (\sin x + \cos x) dx$.

12. Form the differential equation representing the family of curves y = mx, m being arbitrary constant.

13. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively having $\vec{a}.\vec{b} = \sqrt{6}$.

14. Find the direction cosines of the x - axis.

15. Prove that $2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{31}{17}$.

16. Prove that the inverse of a square matrix, if it exists, is unique.

17. Find the equation of tangent to the curve given by $x=\cos t$, $y=\sin t$ at a point where $t=\frac{\pi}{4}$.

18. Find the integral $\int \sin^3 x \cos^3 x \, dx$.

19. Write the steps involved to solve a first order linear differential equation. 2

20. If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, then show that

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

- 21. Show that the lines $\frac{x+3}{-3} = \frac{y-1}{1} = \frac{z-5}{5}$ and $\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{5}$ are coplanar. 2
- 22. Find the mean of the number obtained on a throw of an unbiased die.
- 23. A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is $\frac{1}{100}$. What is the probability that he will win a prize at least once?
- 24. Show that the relation R in the set A of all books in a library of a college, given by $R = \{(x,y) : x \text{ and } y \text{ have same number of pages}\}$ is an equivalence relation. 4

OR

Show that the function $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 5x + 4 is invertible. Find the inverse of f.

- 25. Express the matrix $A = \begin{vmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{vmatrix}$ as the sum of a symmetric and a skew symmetric matrix.
- 26. If u, v and w are functions of x, then show that

$$\frac{d}{dx}(u.v.w) = \frac{du}{dx}.v.w + u.\frac{dv}{dx}.w + u.v.\frac{dw}{dx}.$$

in two ways - first by repeated application of product rule, second by logarithmic differentiation.

XXII Mth 10/22(I)

4

Contd.

Prove that the greatest integer function f given by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.

- 27. Verify Mean Value Theorem, if $f(x) = x^2 4x 3$ in the interval [a, b], where a = 1 and b = 4.
- 28. Prove that $\int_{-a}^{a} f(x) dx = dx = 2 \int_{0}^{a} f(x) dx$, if f is an even function and 0, if f is an odd function.
- 29. Using integration, find the area of the region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2).
- 30. In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs. 1000 is deposited with this bank. How much will it worth after 10 years $(e^{0.5} = 1.648)$.
- 31. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i} + 2\hat{j} \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ respectively, in the ratio 2:1 (i) internally (ii) externally.
- 32. Solve that following system of linear equations, using matrix method:

$$x-y+2z=7$$

 $3x + 4y - 5z = -5$
 $2x - y + 3z = 12$

33. Solve that the semi-vertical angle of the right circular cone of the maximum volume and of given slant height is $\tan^{-1} \sqrt{2}$.

A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening.

34. Show that
$$\int \frac{(3\sin\theta - 2)\cos\theta}{5\cos^2\theta - 4\sin\theta} d\theta = 3\log(2 - \sin\theta) + \frac{4}{2 - \sin\theta} + C$$
.

OR

Show that
$$\int_0^{\pi} \log (1 + \cos x) dx = -\pi \log 2.$$

35. Find the vector equation of a line through a given point and parallel to a given vector in the form $\vec{r} = \vec{a} + \lambda \vec{b}$. Also, derive the cartesian form

$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$$
 a from the vector form.

OR

Find the vector equation of a plane in the normal form $\vec{r} \cdot \hat{n} = d$. Also, derive the cartesian form lx + my + nz = d from the vector form.

36. A direction wishes to mix together two kinds of food X and Y in such a way that the mixture contains at least 10 units of vitamin A, 12 units of vitamin B and 8 units of vitamin C. The vitamin contents of one kg food is given below:

Food	Vitamin A	Vitamin B	Vitamin C
X	1	2	3
Y	2	2	1

One kg of food X costs Rs. 16 and one kg of food Y costs Rs. 20. Find the least cost of the mixture which will produce the required diet.

37. A manufacturer has three machine operators A,B and C. The first operator A produces 1% defective items, whereas the other two operators B and C produce 5% and 7% defective items respectively. A is on the job for 50% of the time, B is on the job for 30% of the time and C is on the job for 20% of the time. A defective item is produced, what is the probability that it was produced by A?