2019
MATHEMATICS
Full Marks : 100
Pass Marks : 33
Time : Three hours
Attempt all Questions.

The figures in the right margin indicate full marks for the questions.

For Question Nos. 1 – 6, write the letter associated with the correct answer.

1. The value of $\sin \left[\frac{\pi}{3} - \sin^{-1} \left(-\frac{1}{2} \right) \right]$ is:

 A. 1

 B. $\frac{1}{2}$

 C. $\frac{1}{\sqrt{2}}$

 D. 0

2. If $f : R \to R$ be given by $f(x) = (3 - x^3)^{\frac{1}{3}}$, then $f^{-1}(x)$ equals:

 A. x^3

 B. $\frac{1}{x^3}$

 C. $3 - x^3$

 D. $(3 - x^3)^{\frac{1}{3}}$

PT.O.
3. Mean and variance of a binomial distribution are 12 and 3 respectively. Then the number of trials is:

 A. 12
 B. 15
 C. 16
 D. 36

4. \[\int e^x \sec x (1 + \tan x) \, dx \] equals:

 A. \(e^x \cos x + C \)
 B. \(e^x \sec x + C \)
 C. \(e^x \sin x + C \)
 D. \(e^x \tan x + C \)

5. The slope of the normal to the curve \(y = 2x^2 + 3 \sin x \) at \(x = 0 \) is:

 A. 3
 B. \(\frac{1}{3} \)
 C. -3
 D. \(\frac{1}{3} \)
6. If the line \(\mathbf{r} = (-2\hat{i} + 3\hat{j} + 4\hat{k}) + \lambda(-K\hat{i} + 2\hat{j} + \hat{k}) \) is parallel to the plane \(\mathbf{r} \cdot (2\hat{i} + 3\hat{j} - 4\hat{k}) + 7 = 0 \), then the value of \(K \) is:

A. \(0 \)
B. \(1 \)
C. \(-1 \)
D. \(-2 \)

7. Show that the operation * on \(\mathbb{R}_+ \) (set of all positive real numbers) defined by \(a * b = \frac{ab}{3} \), \(\forall a, b \in \mathbb{R}_+ \) is a binary operation on \(\mathbb{R}_+ \).

8. Is Rolle's Theorem applicable to the function \(f(x) = |x| \) in the interval \([-1, 1]\) ?

9. If \(\frac{dy}{dx} = \frac{y}{x} \), prove that \(\frac{d^2y}{dx^2} = 0 \).

10. Prove that the function given by \(f(x) = x^3 - 3x^2 + 3x - 5 \) is increasing in \(\mathbb{R} \).

11. Evaluate: \(\int_{1}^{\sqrt{3}} \frac{1}{1 + x^2} \, dx \).

12. What is meant by the general solution of a differential equation?

XXII Mth 10/19 3

P.T.O.
13. If \(|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}| \), find the angle between \(\vec{a} \) and \(\vec{b} \).

15. The cartesian equation of a line is \(\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} \). Write its vector form.

16. If \(\alpha, \beta, \gamma \) be the angles made by a line with the coordinate axes, prove that
\[\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2. \]

17. Show that the relation \(R \) on \(\mathbb{N} \times \mathbb{N} \) defined by
\((a,b) R (c,d) \iff a + d = b + c, \ \forall \ (a,b), (c,d) \in \mathbb{N} \times \mathbb{N} \)

is an equivalence relation.

18. If \(A = \begin{bmatrix} 0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0 \end{bmatrix} \) and \(I \) is the identity matrix of order 2, show that
\(I + A = (I - A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \).

19. Evaluate \(\int_{0}^{\pi/2} \frac{\sin 2x}{\sin^4 x + \cos^4 x} \, dx \).

20. Prove that \(\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \left(\frac{x}{a} \right) + C \).

21. Find the differential equation of the family of curves \(y = e^x (A \cos x + B \sin x) \), where \(A \) and \(B \) are arbitrary constants.

XXII Mth 10/19

Contd.
22. Two cards are drawn simultaneously from a well shuffled pack of 52 cards.
Find the probability distribution of the number of aces.

23. Prove that $\tan^{-1} x + \tan^{-1} y = \tan^{-1}\left(\frac{x + y}{1 - xy}\right), (xy < 1)$ and hence deduce that

(i) $\tan^{-1} x - \tan^{-1} y = \tan^{-1}\left(\frac{x - y}{1 + xy}\right), (xy > -1)$

(ii) $2 \tan^{-1} x = \tan^{-1}\left(\frac{2x}{1 - x^2}\right), (|x| < 1)$

24. If the inverse of a square matrix exists, prove that it is unique. If A and B are both invertible square matrices of the same order, prove that $(AB)^{-1} = B^{-1}A^{-1}$.

25. If $f(x)$ defined by

$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x}, & \text{If } x < 0 \\ c, & \text{If } x = 0 \\ \sqrt{x + bx^2} - \sqrt{x} \times \frac{1}{bx^{3/2}}, & \text{If } x > 0 \end{cases}$$

is continuous at $x = 0$, find the values of a, b and c.

26. Find $\frac{dy}{dx}$, if $x^y + y^x = a^b$.

OR

XXII Mth 10/19

P.T.O.
If \(x^y = e^{x-y} \), prove that \(\frac{dy}{dx} = \frac{\log x}{(\log ex)^2} \).

27. Find the area of the region bounded by the triangle whose vertices are \((-1, 2), (1, 5)\) and \((3, 4)\).

OR

Find the area of the region bounded by the lines \(x + 2y = 2, y - x = 1 \) and \(2x + y = 7 \).

28. Find the integrating factor of the linear equation \(\frac{dy}{dx} + Py = Q \) and hence obtain the general solution of the equation.

29. Define cross product of two vectors and give the geometrical interpretation of the cross product of two vectors. If \(\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \) and \(\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \), obtain the algebraic formula for \(\vec{a} \times \vec{b} \).

30. Prove that:

\[
\int_0^\pi \frac{dx}{1 - 2a \cos x + a^2} = \frac{\pi}{1 - a^2}; \quad (a < 1)
\]

OR

\[
\int_0^{\pi} \frac{x \, dx}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{\pi^2}{2ab}.
\]

XXII Mth 10/19 6 Contd.
31. State and prove Baye's Theorem.

32. Derive the vector equation of a line passing through a given point and parallel to a given vector and hence obtain the cartesian equation of the line.

OR

Derive the vector equation of a plane in the normal form and hence obtain the cartesian equation of the plane.

33. Show that the semi-vertical angle of the cone of maximum volume and of given slant height is \[\tan^{-1}\sqrt{2}. \]

OR

Prove that the curves \(y^2 = x \) and \(xy = k \) cut at right angle if \(8k^2 = 1 \).

34. If \(A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \) and \(B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix} \), find \(AB \) and hence solve the following system of linear equations:

\[
\begin{align*}
x - y &= 3 \\
2x + 3y + 4z &= 17 \\
y + 2z &= 7.
\end{align*}
\]
35. Two godowns A and B have a given storage capacity of 100 quintals and 50 quintals respectively. They supply grain to three ration shops D, E and F whose requirements are 60, 50 and 40 quintals respectively. The cost of transportation per quintal from godowns to the shops are given in the table below:

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Transportation cost per quintal (in rupees)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

How should the supplies be transported in order that the transportation cost is minimum? Solve the problem graphically.